レーザーテックの知財戦略: EUV時代の技術的要塞と持続的優位性の構築

エグゼクティブサマリ

本レポートは、レーザーテック株式会社の知的財産(IP)戦略について、一次情報に基づき網羅的に分析するものです。

- 同社のIP戦略は、経営理念「世の中にないものをつくり、世の中のためになるものをつくる」」と、「R&D志向のファブライト企業」²というビジネスモデルの根幹を成しています。
- IP戦略の目的は、他社IPの侵害回避に留まらず、独自技術の権利化による「製品の差別化」 「競争優位性の強化」、そして「高い市場シェアと高い利益率」の維持にあります³。
- 同社は「単一部門」によるIPデータベースの一元管理¹⁷と、「発明考案報奨制度」¹⁵を通じ、組織的なIP創出の仕組みを確立しています。
- この体制は、エンジニアが製品ライフサイクル全体(企画から保守まで)に関与する¹⁷という独自 の組織文化によって支えられ、実践的なIP創出を加速させていると推察されます。
- 戦略の中核は、EUVリソグラフィ(13.5nm波長)に必須の「アクティニック(Actinic)検査技術」にあります。DUV(深紫外線)光では検出不可能な「位相欠陥」¹⁴を検出できる世界初の装置群(ABICS, ACTIS)¹³で市場を独占しています。
- この技術的要塞は、従来の透過光学系ではなく、極めて製造難易度の高い「反射光学系」¹⁴を 商用化したことで築かれました。
- 競合他社(例: KLA)は、非アクティニック(DUV)技術の延長²⁴で対抗を試みていますが、現時点でアクティニック検査市場への参入は果たせていません。
- リスクとして、中核特許(2014~2017年頃出願)^{8, 9, 44}の2030年代半ばにおける権利満了(パテントクリフ)が挙げられます。
- 同社はこのリスクに対し、次世代のHigh-NA EUVに対応した新製品(A300, E320シリーズ)⁷⁸
 ⁷⁹を既に市場投入しており、特許ポートフォリオを次世代に移行させる「ローリング・モノポリー(Rolling Monopoly)」戦略を実行していると分析されます。
- 2024年の空売りレポート⁶⁵, ⁹¹による信頼性リスクに対し、同社は特別調査委員会を設置し「不適切な会計処理は認められなかった」⁹⁰と公式に発表しています。
- 結論として、レーザーテックの知財戦略は、高リスクな「世界初」¹のR&D投資を回収し、持続的な高収益を確保するため、代替不可能な技術(IP)でエコシステム上の「料金所(Tollbooth)」を掌握する、極めて攻撃的かつ体系的な戦略であると評価されます。

背景と基本方針

レーザーテック株式会社(以下、レーザーテック)の知的財産(IP)戦略は、同社の経営戦略と不可分に結びついており、その持続的な競争優位性の源泉となっています。本章では、同社の経営理念、ビジネスモデル、そして公式に表明されている戦略目標の三側面から、知財戦略の基本的な位置づけを分析します。

経営理念と知財戦略の不可分性

レーザーテックの企業活動の根底には、1960年の創業以来守り続けてきたとされる経営理念「世の中にないものをつくり、世の中のためになるものをつくる」「があります。これは、既存市場でのシェア拡大よりも、新市場の創出(Blue Ocean戦略)を優先する明確な意思表明であると見られます。

この理念は、同社の「開発の精神」として「毎年一つの新製品を開発しよう、それも世界ではじめてのものを」」と具体化されています。この「世界初」への強いこだわりは、必然的に二つの結果をもたらします。第一に、R&D活動が常に未知の領域への挑戦となり、巨額の先行投資と高い開発リスクを伴うこと。第二に、成功した場合、その技術は本質的に「独自技術」となり、強力な知的財産権の源泉となることです。

一般的な製造業では、知財戦略は既存事業を防衛したり、競合他社とのクロスライセンス交渉を有利に進めたりするための「手段」として位置づけられることが多いと推察されます。しかし、レーザーテックの経営理念¹においては、「世の中にないもの(=独自IPの源泉)」を「つくる(=R&D活動)」ことが経営の核(Core)であるため、IP戦略は経営理念を実現するための「手段」であると同時に、理念そのものとほぼ同義であると分析されます。つまり、同社にとって「世界初」の製品を開発することは、そのまま「世界初」の特許ポートフォリオを構築することと不可分一体であり、IP戦略は事業戦略の根幹を成していると言えます。

ビジネスモデル(ファブライト)とIPの役割

レーザーテックは、自社のビジネスモデルを「R&D志向のファブライト企業」^{2,11}と定義しています。ファブライト(Fab-lite)とは、半導体業界で一般的に用いられる用語であり、自社での生産(Fabrication)設備への投資を最小限に抑え、製造の大部分を外部のパートナー企業に委託する形態を指します。これにより、経営資源を中核的な強みである研究開発(R&D)に集中させることが可能となります。

このビジネスモデルの選択は、知財戦略に対して決定的な影響を与えます。ファブライト・モデルを採用する企業は、製造プロセスや量産化技術といった「モノづくり」のノウハウを自社内に蓄積しにく

いという構造的特性を持ちます。その結果、企業の競争優位性は、物理的な製造能力ではなく、製品の設計、コア技術、アルゴリズムといった「無形資産」に大きく依存することになります。

もし、この無形資産(=独自技術)が知的財産権によって法的に保護されていなければ、製造委託 先や競合他社による模倣(リバース・エンジニアリングなど)に対して極めて脆弱となります。特に レーザーテックのような「世界初」「の製品を市場に投入する企業にとって、製品が公開された瞬間に その核心技術が模倣されれば、巨額のR&D投資を回収する前に価格競争に巻き込まれ、事業その ものが成立し得ません。

したがって、レーザーテックのファブライト・モデルは、強力な知的財産戦略による「防衛」がなければ成立しない、いわば「IP戦略ありき」のビジネスモデルであると推察されます。IPによる技術の独占が、製造を外部委託してもなお高い利益率を維持できる(¹参照)ことの論理的帰結であると考えられます。

IR資料に見る知財戦略の公式定義

同社が投資家向けに公開しているIR資料(統合報告書など)³では、知財戦略の目的が明確に定義されています。そこには、防衛的側面と攻撃的側面の両方が含まれています。

第一の目的は、防衛的な側面、すなわち「他者の知的財産権の侵害」³を回避することです。同社は「R&Dの初期段階から」³他社のIP権を調査し、侵害リスクを最小化するプロセスを組み込んでいると言及しています。これは、特に技術が複雑に絡み合う半導体製造装置業界において、事業継続性を担保するための標準的かつ不可欠なリスク管理活動です。

第二の、より重要な目的は、攻撃的な側面です。同社は「当社が開発した独自技術の権利を確保し、それによって製品を他社と差別化し、競争優位性を強化する」³ことを明確な目的として掲げています。これは、IPを単なる「盾」ではなく、市場での優位性を築くための「武器」として積極的に活用する姿勢を示すものです。

そして同社は、この知財戦略の最終的な経営貢献として、「当社が提供する各製品の高い市場シェアと高い利益率を維持するために努力している」。と結論づけています。これは、同社のIP戦略が、技術的優位性を確保する(差別化)だけでなく、その優位性を経済的価値(高い市場シェアと利益率)に転換するための、経営の中核的なメカニズムとして機能していることを公式に認めるものです。

「世界初」のハイリスクR&DとIPによるリターン確保

前述の通り、「世の中にないものをつくる」」という戦略は、本質的に極めて高いリスクを伴います。市

場が存在しないため需要予測が困難であり、技術的な難易度が高いため開発コストが巨額になり、 開発期間も長期化する傾向があるためです。

このハイリスクなR&D戦略が経営判断として継続的に許容されるためには、成功した場合のリターン (=利益)が、失敗した場合の損失を補って余りあるほど莫大であり、かつ、そのリターンを競合他社に奪われることなく長期間にわたって確保できるという、合理的な見通しが必要となります。

ここで知財戦略が決定的な役割を果たします。レーザーテックのIP戦略は、この「ハイリスク・ハイリターン」モデルを経済的に成立させるための「リターン回収メカニズム」として機能していると分析されます。

すなわち、EUV(極端紫外線)マスク検査装置(詳細は後述)のような「世界初」「の製品開発に成功し、それが市場(半導体メーカー)に不可欠な技術として受け入れられた瞬間、あらかじめ構築しておいた強固な特許網によって、競合他社の市場参入を即座にかつ法的にブロックします。これにより、製品ライフサイクルの初期段階(最も利益率が高い時期)において、価格競争を回避し、独占的または寡占的な市場シェア(2参照)を維持することが可能となります。

この独占的な地位によって得られた莫大な利益(営業利益率49%という二次情報²⁰もある)が、先行 投資した巨額のR&Dコストを回収し、さらに次の「世界初」「の技術開発(例:次世代のHigh-NA EUV 対応検査装置)への再投資原資となります。

結論として、レーザーテックの知財戦略は、経営理念である「世界初」への挑戦(ハイリスク)を、ファブライト・モデル(リソース集中)の上で実行し、その成果をIP(独占)によって確実に刈り取る(ハイリターン)という、一貫した経営サイクルを回すための「エンジン」そのものであると評価されます。

当章の参考資料

- •
- 1. https://www.lasertec.co.jp/company/philosophy.html
- ullet
- 2. https://www.lasertec.co.jp/en/ir/data/integrated report.html
- •
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html
- •
- 11. https://www.lasertec.co.jp/en/
- •
- 20. https://note.com/jpctfund/n/n314f4cf3d424

全体像と組織体制

レーザーテックの知財戦略は、単なる理念や目標に留まらず、それを実行・管理し、継続的にIPを創

出するための具体的な組織体制によって支えられています。本章では、同社の知財ガバナンス、IP 創出の仕組み、そしてそれを支える独自の組織文化について分析します。

知財ガバナンスと管理体制

レーザーテックの知的財産活動は、コーポレート・ガバナンス体制の一部として明確に組み込まれています。コーポレート・ガバナンス報告書¹⁵やサステナビリティ報告書¹⁷, ¹⁹などの公式資料において、IP戦略は「Technology and Quality(技術と品質)」¹⁷の項目内で重点的に扱われています。

具体的な管理体制として、同社は専門の「知財部門」¹⁵を設置しています。同社の「Intellectual property (IP) strategy」に関する記述¹⁷によれば、この専門部署は「a single department(単一の部門)」¹⁷, ⁵⁶と表現されており、知財機能が集約されていることが示唆されます。

この知財部門の主要な役割は、「IPデータベースを構築し、知財情報管理と出願手続を一元管理する」¹⁵ことです。具体的には、「IPデータベースの設定・管理は単一の部門に集約され、特許出願の管理も行っています」¹⁷, ⁵⁶と説明されています。

この「一元管理」体制は、知財戦略の実行において高い効率性と戦略性をもたらすと推察されます。全社(各R&Dプロジェクト)で創出された発明のシーズ(種)が、一つのデータベースに集約されることで、経営戦略や技術ロードマップと照らし合わせた戦略的な出願判断(どの技術を、どの国で、どのタイミングで権利化するか)が可能となります。また、出願手続の管理(administration of patent filings) であることで、権利化までのスピードを上げ、手続上の漏れを防ぐことにも寄与していると考えられます。

IP創出を促進する組織的仕組み

レーザーテックは、専門部門による「管理」¹⁵だけでなく、全社的なIPの「創出」を促進するために、複数の具体的な施策を講じています。

第一に、エンジニアの知財マインドの醸成です。同社は「社内教育を定期的に実施する」¹⁵、「定期的な社内IP研修の実施」¹¹を行うことで、R&Dの最前線にいるエンジニア自身が、自らの技術的成果を知的財産権として認識し、保護することの重要性を理解するよう努めていると見られます。

第二に、発明へのインセンティブ設計です。同社は「発明考案報奨制度」¹⁵(「社内発明家に対する報奨(reward in-house inventors)」^{17,56})を導入しています。これにより、エンジニアが積極的に発明を届け出ること(特許出願)を金銭的・非金銭的に奨励し、IP創出のモチベーションを高めています。

これらの施策(研修と報奨)は、組織全体で継続的にIPを生み出すための「仕組み」として機能してお

り、知財部門(管理)とR&D部門(創出)が両輪となってIP戦略を推進する体制が構築されていることを示しています。

エンジニアの役割と「実践的IP」の創出

レーザーテックのIP創出体制における真の強みは、上記のような制度的側面^{15, 17}以上に、エンジニアの組織横断的な役割¹⁷にあると推察されます。同社のサステナビリティ報告書(Technology and Quality)¹⁷には、その独自とも言えるエンジニアの業務形態が詳細に記述されています。

一般的な大企業の製造業では、R&D、設計、製造、品質保証、保守サポートといった機能は、専門部署として縦割りに分かれているケースが多く見られます。しかし、レーザーテックのエンジニアは、「製品開発だけでなく、企画、要素技術研究、試作、設計、製造、納入、据付、保守といった製品ライフサイクルのあらゆる側面を担当します」「とされています。

この「一人多役」とも言える体制は、実践的かつ強力なIPを創出する上で、決定的な優位性をもたらす可能性があります。

第一に、顧客ニーズの直接的な把握と「問題の早期発見」です。エンジニアが、製品企画の初期段階だけでなく、納入後の保守(メンテナンス)¹⁷や「顧客との日常的なコミュニケーション」¹⁷の現場に直接立つことで、顧客自身もまだ明確に言語化できていない「新たなニーズや潜在的な用途」¹⁷を、技術者の視点で直接把握することができます。これは、次の「世界初」¹の技術シーズ、すなわち最も価値のあるIPの源泉を、競合他社に先駆けて発見する機会を最大化します。

第二に、部門の壁を超えた「多角的な解決策」の創出です。一人のエンジニアがR&Dから保守まで「の広範な知見を持つため、ある部門では解決困難な問題(例:製造工程で発生する特定の課題)に直面した際、別の視点(例:要素技術の研究や、保守性を考慮した設計変更)から、分野横断的な解決策(=発明)が生まれやすい環境であると言えます。

同社の組織運営も、こうした現場起点のIP創出を支援していると見られます。「経営陣も参加する」「デザインレビュー」「の場で、現場から上がってきた新たなニーズや課題に対して「迅速な意思決定 (quick decision making)」「が行われる体制が整っています。また、異なる部門の同じ職務(例:光学設計)のエンジニアが集まり知識を共有する場「が設けられるなど、「知識共有を促進するフラットで柔軟な組織」「が維持されていることも、組織的なIP創出力の基盤となっていると考えられます。

早期からの評価:2013年「特許庁長官賞」受賞

レーザーテックのこうした高度な知財体制は、EUV関連製品が市場を席巻する以前から、外部機関

によって高く評価されていました。

同社は2013年(平成25年度)、経済産業省(特許庁)が主催する「知財功労賞」において、「産業財産権制度を有効に活用した企業」として「特許庁長官賞」を受賞しています^{17,37,41,53,56,57,59}。これは、同社のIP活動が体系的かつ効果的に運用されていることの客観的な証左です。

ここで特に注目すべきは、この「2013年」という受賞時期です。同社の現在の主力製品であり、独占的な地位を築いているEUVマスクブランクス検査装置「ABICS E120」の発売は2017年59、EUVパターンマスク検査装置「ACTIS A150」の発売は2019年53です。

つまり、レーザーテックは、EUV検査という巨大な技術的課題に直面し、そのソリューションで市場を 制覇する以前から、高度な「IP創出・管理システム」を社内に構築し、それが公的に評価されるレベルで成熟・運用していたことが強く示唆されます。

この事実は、同社のEUV市場での成功が、単なる幸運や偶発的な「世紀の発明」によるものではなく、長年にわたり培ってきた成熟したIP創出システム(組織・制度・文化)を、半導体業界で最も困難かつ収益性の高い技術課題(EUV検査)に戦略的にターゲティングした結果であることを示しています。この強固な組織体制こそが、同社の知財戦略の持続可能性を担保している最大の要因であると分析されます。

当章の参考資料

- lacktriangle
- 1. https://www.lasertec.co.jp/company/philosophy.html
- 15. https://finance-frontend-pc-dist.west.edge.storage-yahoo.jp/disclosure/20250929/2 0250822545830.pdf
- 17. https://www.lasertec.co.jp/en/sustainability/quality.html
 - 19. https://www.daiwair.co.jp/td_download.cgi?c=6920&i=2864798
- 37. https://www.lasertec.co.jp/en/sustainability/quality.html
- 41. https://www.lasertec.co.ip/en/company/pdf/en_company_profile202507.pdf
- 53. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202411.pdf
- 56. https://www.lasertec.co.jp/en/sustainability/guality.html
- 57. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202408.pdf
- 59. https://www.lasertec.co.jp/en/company/history.html

詳細分析①:技術的要塞の構築(EUVアクティニック検査技術)

レーザーテックの現在の独占的な市場地位は、特定の技術領域における圧倒的な優位性によって築かれています。その核心が「EUV(極端紫外線)アクティニック検査技術」です。本章では、この技術領域における課題、レーザーテックによる解決策、そしてそれがどのように強固な知的財産(IP)の要塞を形成したかを詳細に分析します。

EUVリソグラフィと検査の根本的課題

半導体製造プロセスは、ムーアの法則に従い、より微細な回路パターンをシリコンウェーハ上に形成するために進化を続けてきました。従来のArF液浸リソグラフィ(波長193nm)が限界を迎える中、次世代技術として登場したのがEUV(Extreme Ultraviolet:極端紫外線)リソグラフィです⁸⁷。

EUVリソグラフィは、波長が13.5nmという、従来の10分の1以下の極めて短い光⁸⁷を使用します。この短い波長により、5nmや3nm、さらにはそれ以降の微細なICパターン形成が可能となりました⁸⁷。しかし、この13.5nmという光の波長は、技術的に根本的な課題をもたらしました。

最大の問題は、EUV光が「あらゆる物質(空気、ガラスなど)に吸収される」という特性です。これにより、従来のArFリソグラフィで用いられていたような、石英ガラス製のレンズを用いた「透過光学系」¹⁴が一切使用できません。真空(Vacuum)環境下で、レンズの代わりに特殊な多層膜ミラーを用いた「反射光学系」¹⁴で光を導く必要が生じました。

この変化は、リソグラフィの「原版」であるフォトマスク(レチクル)にも及びました。従来は光を透過させる「透過型マスク」でしたが、EUVでは光を反射させる「反射型マスク」が必要となりました。EUVマスクは、石英基板の上に、モリブデン(Mo)とシリコン(Si)の薄膜を数十層重ねた「多層膜(Multilayer)」を成膜し、その上にEUV光を吸収する「吸収体(Absorber)」パターンが描かれた複雑な構造をしています。

DUV(非アクティニック)検査の限界

このEUVマスクの複雑な構造が、従来の検査技術では対応できない新たな課題を生み出しました。

半導体製造において、マスクに微細な欠陥があれば、それがそのままウェーハに転写(印刷)され、 大量の不良チップを生み出すため、マスクの「欠陥ゼロ」は至上命題です。

しかし、従来のマスク検査装置で用いられていたDUV(Deep Ultraviolet:深紫外線)光(例:193nm や266nm)¹⁴では、EUVマスクの品質を保証できませんでした。NEDO(新エネルギー・産業技術総合 開発機構)の報告書によれば、従来のDUV光では、EUVマスクブランクス(多層膜)の「表面付近の 情報しか得ることができません」¹⁴とされています。

EUVマスク特有の最も厄介な欠陥が、多層膜の内部に存在するナノメートル単位の微細な凹凸、すなわち「位相欠陥(Phase Defect)」¹³、⁴⁶です。この位相欠陥は、DUV光の検査では波長が長すぎて検出が極めて困難(あるいは不可能)⁵⁵、⁶²です。しかし、リソグラフィ本番で使われるEUV光(13.5nm)がこの欠陥に当たると、反射光の位相がずれてしまい、ウェーハ上にはあたかも吸収体パターンがあるかのように転写されてしまいます。

つまり、DUV検査では「欠陥なし」と判断されたマスクが、EUV露光装置(ASMLのスキャナ)にかけると「印刷可能な(Printable)」欠陥⁴⁶として不良を引き起こす、という致命的な問題が発生しました。このため、EUVリソグラフィの量産(HVM: High-Volume Manufacturing)を実現するには、DUV光(非アクティニック光)ではなく、リソグラフィ光と同じ波長13.5nmのEUV光を用いた「アクティニック(Actinic)検査」⁶⁷が不可欠であると、業界で長年(20年以上)⁶⁷認識されていました。

「反射光学系」という技術的障壁

しかし、「アクティニック検査」の実現は、言うは易く行うは難し、でした。前述の通り、EUV光(13.5nm)はレンズ(透過光学系)を使えないため、検査装置内部にも、EUV露光装置と同様に、極めて高精度な「反射光学系(複数のミラーで構成された装置)」¹⁴を構築する必要がありました。

これは、EUV露光装置(ASMLが独占)そのものを小型化して検査装置内部に組み込むに等しいほどの技術的難易度であったと推察されます。NEDOの助成事業(「電子・情報次世代半導体微細加工・評価基盤技術の開発」)14の一環としても研究が進められたこの技術は、市場(半導体メーカー)が要求する解像度(欠陥検出感度)を実現するために「多くの試行錯誤が繰り返されました」14と報告されています。

特に「満足のいく解像度を得ることができなかったため、ミラーの研磨技術と光学系の調整技術を共に高めていく必要」¹⁴があり、レーザーテックはこの基本設計の最適化と実用化に成功し、世界で初めてアクティニック検査装置の商用化(⁴参照)を果たしました。この「高精度反射光学系」こそが、競合他社が容易に模倣できない、極めて高い技術的障壁(参入障壁)となりました。

IPによる「技術的要塞」の確立

レーザーテックの知財戦略の中核は、この「EUV光(13.5nm)を用いた高精度反射光学系によるアクティニック検査技術」を、特許ポートフォリオによって法的に独占した点にあります。

同社は、EUVマスクブランクス検査(ABICS)⁴³やEUVパターンマスク検査(ACTIS)⁴⁶に関連する基本特許を、技術開発の初期段階から戦略的に出願・取得していると見られます。Google PatentsやJustiaなどの公開特許データベース(⁶)を調査すると、レーザーテック株式会社を譲受人(Assignee)とする、EUV検査装置、光学系、汚染防止技術、フォーカス調整方法などに関する多数の特許(例: US Patent 10319088 "Inspection apparatus of EUV mask and its focus adjustment method"。US Patent 11353802 "Optical device, and method for preventing contamination of optical device"¹³、³⁸、JP2013080810A "EUV mask inspection device"⁷、US9588421B2 "Pellicle inspection device"⁸など)が確認できます。

これらの特許群が、競合他社がアクティニック検査装置を開発・販売することを法的に阻止する「技術的要塞」を形成しています。

この戦略は、半導体エコシステム全体から見ると、極めて巧みなポジショニングであったと分析されます。ASMLがEUVリソグラフィという巨大なエコシステム(⁷)を主導する中、レーザーテックは、そのエコシステムが機能(量産)するために不可欠でありながら、ASML自身も(あるいはKLAのような既存の検査機器大手も)解決できなかった唯一の技術的ボトルネック(=アクティニック検査)に、R&DリソースとIP戦略を集中させました。

そして、その世界初の解決策(高精度反射光学系)を強力な特許ポートフォリオで固めた結果、Intel、TSMC、Samsungといった世界の全ての最先端チップメーカー⁷⁶がEUVリソグラフィ(ASMLの装置)を用いて量産を行うためには、例外なくレーザーテックの特許技術(を搭載した製品)を使用し、その「通行料」を支払わなければならない状況、すなわちエコシステム上の「料金所(Tollbooth)」を構築することに成功したと評価されます。この強固な「技術的要塞」が、同業他社の参入を事実上不可能(2参照)にし、同社の高い市場シェアと利益率3を支える根源となっていると結論付けられます。

当章の参考資料

- •
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html
- •
- 7. https://patents.google.com/patent/JP2013080810A/en
- •
- 8. https://patents.google.com/patent/US9588421B2/en
- •
- 9. https://patents.justia.com/patent/10319088
- _
- 13. https://patents.justia.com/assignee/lasertec-corporation
- •
- 14. https://www.nedo.go.jp/media/practical-realization/201903lt.html

- 38. https://patents.justia.com/assignee/lasertec-corporation
- 43. https://www.lasertec.co.jp/en/ir/individuals/creation.html
- 44. https://patents.justia.com/assignee/lasertec-corporation
 - 46. https://confit-sfs.atlas.jp/customer/pmj2021/exhibition/document/113_Lasertec01_210 226e4.pdf
- 53. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202411.pdf
- 55. https://spie.org/documents/Membership/BacusNewsletters/BACUS-Newsletter-January-2020.pdf
- 59. https://www.lasertec.co.jp/en/company/history.html
 - 62. https://www.spiedigitallibrary.org/conference-proceedings/of-spie/11148/111480W/Actinic-patterned-mask-defect-inspection-for-EUV-lithography/10.1117/12.2538001.full
- 67. https://spie.org/documents/Membership/BacusNewsletters/BACUS-Newsletter-January-2020.pdf
 - 68. https://semiengineering.com/searching-for-euv-mask-defects/
 - 69. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-188.pdf
- 76. https://news.futunn.com/en/post/64067417/amid-the-sweeping-ai-wave-the-long-semiconductor-equipment-sector
 - 87. https://www.lasertec.co.jp/en/ir/individuals/euv.html

詳細分析②:製品ポートフォリオとIPライフサイクル(ローリング・モノポリー)

レーザーテックの知財戦略は、単に技術的要塞を築くだけでなく、それを具体的な製品ポートフォリオに落とし込み、さらに技術の世代交代に合わせてIPポートフォリオを継続的に更新(リフレッシュ)していくという、動的なライフサイクル管理によって特徴づけられます。本章では、同社の独占的製品ラ

インアップと、中期的なリスク(パテントクリフ)に対応する次世代IP戦略について分析します。

独占的製品ポートフォリオ(ABICS & ACTIS)

レーザーテックのIP戦略は、EUVマスクの製造・使用プロセスにおいて不可欠な両方の重要な検査ステップを、二つの強力な製品ラインで抑えている点に具現化されています¹³, 46。

- 1. ABICS E120(EUVマスクブランクス検査・レビューシステム)
 - EUVマスクは、まずパターンが描かれる前の「マスクブランクス」(多層膜が成膜された基板)の 品質が保証されなければなりません。ABICSは、このブランクス段階での欠陥、特にDUV光で は検出不可能な「位相欠陥」を検査するために開発されました。
 - 同社の製品ラインアップ資料¹³, ⁴⁶によれば、ABICS E120は2017年に発売され⁵⁹、「EUVブランク検査にアクティニック光(13.5nm)を採用した唯一のシステム(The only system adopting actinic light... for EUV blank inspection)」であり、かつ「位相欠陥を検出できる唯一のシステム(The only system capable of detecting phase defects)」¹³, ⁴⁶であると明確に謳われています。これは、マスクブランクス・メーカー(例: AGC、HOYA)が最先端の半導体メーカー(例: TSMC、Intel)に製品を納入する上で、ABICSによる検査が事実上の「業界標準(デファクトスタンダード)」となっていることを示唆しています。
- 2. ACTIS A150(アクティニックEUVパターンマスク検査システム)
 - ブランクスに回路パターンを描画(E-Beam描画・エッチング)した後、そのパターンが正確に形成されているか、またプロセス中に新たな欠陥が発生していないかを検査するのが「パターンマスク検査」です。
 - 2019年に発売されたACTIS A150⁵³は、このパターンマスク検査に対しても、「アクティニック光(13.5nm)を採用した唯一のシステム(The only system adopting actinic light... for EUV patterned mask inspection)」¹³, ⁴⁶とされています。ACTISのIP上の重要な優位性は、単にアクティニック光であること(位相欠陥の検出)⁶²に留まりません。
 - EUVマスクは、量産工程で使用する際、微小なゴミ(パーティクル)の付着を防ぐために「ペリクル」45と呼ばれる薄い保護膜を取り付けます。DUV光はこのペリクルを透過しないため、従来のDUV検査装置ではペリクル装着後のマスクを検査できませんでした。しかし、EUV光(13.5nm)はペリクルを透過する特性があります。ACTISは、この特性を活かし、ペリクルを装着したまま検査が可能な「ペリクル越し検査(through-pellicle inspection)」¹³, 46を実現しました。これにより、半導体メーカー(ファブ)は、マスクを使用する直前にその品質を再保証できるという、歩留まり管理上、極めて重要な価値を提供しています。

これらABICSとACTISという二つの「世界唯一」¹³, ⁴⁶の製品群が、マスク製造の川上(ブランクス)と川下(パターンマスク)の両方をIPで抑える、鉄壁の製品ポートフォリオを形成しています。

参入障壁の高さと独占の維持

この「世界唯一」^{13,46}の地位が、極めて高い参入障壁を形成しています。前章で分析した「高精度反射光学系」¹⁴⁽⁸⁾という物理的な製造の困難さに加え、それを実現するための基本特許群(⁶)が、競合他社の参入を阻んでいます。

二次情報(アナリストレポート等)²⁰によれば、EUV検査分野への新規参入には「数千億円規模の投資」と「5~10年の開発期間」が必要と試算されています。これは、たとえ競合他社(例: KLA)がレーザーテックの特許を回避する別の技術(例: E-Beam)を開発しようとしても、莫大な時間とコストがかかることを意味します。この時間的・コスト的障壁が、「事実上の独占状態が続く見込み」²⁰であると分析される主な根拠となっています。

IPライフサイクルと「パテントクリフ」のリスク

一方で、この強力な独占的地位は、その基盤である「特許」の存続期間に依存するという本質的な脆弱性を抱えています。これは、レーザーテックのIP戦略における最大の中期的な戦略リスク、すなわち「パテントクリフ(特許の崖)」であると分析されます。

特許権の存続期間は、原則として出願から20年間です。レーザーテックの現在の独占を支えるEUV アクティニック検査関連の中核特許群(例: US9588421B28、US103190888、US1064528944など)は、EUVリソグラフィが本格的に量産適用される前の、2014年~2017年頃に多く出願・付与されています。

例えば、ペリクル検査装置に関する重要特許の一つと見られる「US9588421B2」⁸は、優先日(Priority date)が2014年4月11日です(ただし、2025年4月14日付で維持手数料不払いにより失効(Expired)⁸との記録もあるが、これは特定の特許ファミリーの一例であり、中核となる特許群全体の動向を注視する必要がある)。仮に2014年~2015年頃に出願された中核特許群が存続期間を満了すると仮定すると、**2030年代半ば(例:2034年~2035年頃)**から、これらの中核技術がパブリックドメイン(公共の財産)となり始めます。

これは、KLAやASMLのような強力な資本力と製造技術力を持つ競合他社が、レーザーテックの基本技術を(一部)合法的に模倣し、アクティニック検査市場へ後発参入(ジェネリック参入)できる「窓」が開き始めることを意味します。このパテントクリフは、同社の「高い利益率」3の源泉を根本から脅かす、最も深刻な中期的リスクであると分析されます。

次世代IP戦略:「ローリング・モノポリー」

レーザーテック経営陣および知財部門は、このパテントクリフのリスクを明確に認識し、それに対する戦略的な「先手」を打っていると見られます。その戦略こそが、次世代リソグラフィ技術「High-NA(高開口数)EUV」への対応です。

High-NA EUVリソグラフィは、現在のEUV(NA 0.33)よりもさらに高い開口数(NA 0.55)を持つ露光技術であり、3nm/2nmノード⁸²や、それ以降の「オングストローム(Angstrom)時代」⁷⁸と呼ばれる最先端のチップ製造に不可欠な技術です。High-NAでは、マスクパターンはさらに複雑化・微細化し、検査装置に求められる検出感度や解像度の要件も格段に厳しくなります。

レーザーテックは、競合他社が現行のEUV検査装置(ACTIS A150)の模倣やキャッチアップにリソースを割いている間に、自らは現在の独占で得た莫大な利益(1)を、次世代(High-NA)の研究開発に 先行投資しています。

同社は、SPIE(国際光工学会)などの最先端の技術学会において、High-NA EUVリソグラフィに対応する次世代ACTISの開発(⁹)について積極的に発表を続けています。2023年に開催された「SPIE Photomask Technology + EUV Lithography 2023」においては、同社のエンジニアが「次世代High NA対応のアクティニックEUVパターンマスク欠陥検査装置に関する発表」で「Best Paper Presentation Award(1位)」を受賞⁸⁰しており、この分野での技術的リーダーシップを明確に示しています。

そして、このR&Dの成果は、すでに具体的な製品として市場に投入されています。2023年11月には、 High-NA EUVリソグラフィ向けに設計された「ACTIS A300」シリーズ⁵⁴, ⁷⁸, ⁸⁵を発表。また、同じく High-NA対応の次世代EUVマスクブランクス検査システム「ABICS E320」⁷⁹もリリースしています。これらの新製品には、当然ながら新たな技術革新が盛り込まれており、それらを保護するための新たな特許ポートフォリオ(¹³など)が構築されていると推察されます。

これは、現在の特許の「壁」が切れる(2030年代半ば)よりも前に、顧客(TSMC, Intel等)を次世代の「High-NAの壁」に移行させ、新たな技術(IP)によるロックイン(顧客の囲い込み)を生み出す戦略です。特許(IP)によって独占期間を継続的に「更新(Roll)」していく、いわば**「ローリング・モノポリー(Rolling Monopoly)」戦略**と呼ぶべきものです。これは、極めて高度なIPライフサイクル管理であり、競合他社が模倣(キャッチアップ)のターゲットを定める頃には、すでに次の技術世代(と次の特許網)に移行しているという、持続的優位性を確保するための戦略であると高く評価されます。

当章の参考資料

- ullet
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html
- - 8. https://patents.google.com/patent/US9588421B2/en
- 9. https://patents.justia.com/patent/10319088
 - 13. https://patents.justia.com/assignee/lasertec-corporation
- •

- 14. https://www.nedo.go.jp/media/practical-realization/201903lt.html
- 20. https://note.com/jpctfund/n/n314f4cf3d424
- 44. https://patents.justia.com/assignee/lasertec-corporation
- 45. https://www.lasertec.co.ip/en/news/2024/20241202 3888.html
 - 46. https://confit-sfs.atlas.jp/customer/pmj2021/exhibition/document/113_Lasertec01_210 226e4.pdf
- 53. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202411.pdf
- 54. https://www.lasertec.co.jp/en/news/2023/20231124_3841.html
- 59. https://www.lasertec.co.jp/en/company/history.html
- 60. https://scholar.google.com/citations?user=z3dyKXkAAAAJ&hl=ja
- 62. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11148/111480W/Actinic-patterned-mask-defect-inspection-for-EUV-lithography/10.1117/12.2538001.full
- 77. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291502/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.short
- 79. https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F_D21BFA11D6B4C4?1 733129211
- 80. https://www.lasertec.co.jp/news/2023/20231108_3839.html
- 81. https://discovery.researcher.life/article/thermomechanical-stability-analysis-of-large-masks-6-12-for-high-na-euv-lithography/7bbe8a612fe13acb94436d9fa6d75594
- 82. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291502/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.short
- 83. https://spie.org/Publications/Proceedings/Volume/12915
- 84. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12325/123250H/A

ctinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2642098.short

- 85. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spiedings-of-
- 88. https://semiengineering.com/metrology-strategies-for-2nm-processes/

競合比較

レーザーテックの知財戦略は、半導体製造装置(SPE)業界という巨大なエコシステムの中で、極めてユニークなポジショニングを確立しています。本章では、主要な関連企業(KLA、ASML、Applied Materials)との比較を通じて、同社のIP戦略の特異性と戦略的意図を浮き彫りにします。

概要:独占的ニッチと巨大エコシステムの共存

レーザーテックのIP戦略は、KLA、ASML、Applied Materials(AMAT)といった業界の巨人と、リソグラフィや成膜・エッチングといった中核市場で正面から衝突することを意図的に避けていると見られます。その代わりに、彼ら(特にASML)が主導するEUVエコシステムが機能するために不可欠な、しかし技術的難易度が極めて高い「アクティニック(EUV光)検査」という「ニッチ市場」にR&DとIPリソースを集中投下しました。

その結果、このニッチ市場において100%の独占的シェア²⁰, ⁶⁴をIPによって確立し、エコシステム全体の「料金所」³, ¹³を掌握するという戦略を採っています。

KLA (旧 KLA-Tencor) との比較

市場と技術: KLA(旧KLA-Tencor)は、長年にわたり半導体の検査・測定(Metrology and Inspection)市場、特に「光学パターンマスク検査装置」64の分野で圧倒的なシェアを持つ支配的企業です。EUVリソグラフィの時代においても、KLAはEUVレチクル(マスク)の品質管理向けに「Teron」シリーズ(例: Teron SL670e、Teron SL670e XP)²⁴を市場に投入しています。

技術的ギャップ: KLAのTeronシリーズは、EUVレチクル品質管理(EUV Reticle Quality Control)24を

謳ってはいますが、その基盤技術は、KLAが伝統的に強みを持つDUV光(非アクティニック光)ベースの光学検査技術を「ストレッチ(拡張)」5⁶⁸させたものであると業界では認識されています。これらの装置は、高解像度化技術(例:Off-axis illumination)⁶⁸や偏光⁶⁸の利用、あるいは複数回のスキャン⁶⁸によって検出感度を高め、EUVマスクの欠陥(特に吸収体パターンの欠陥)の一部を検出することは可能とされます。しかし、EUVリソグラフィ特有の「位相欠陥」の検出能力においては、リソグラフィ光(13.5nm)そのものを使用するレーザーテックのアクティニック検査(APMI)技術⁶²に、原理的に及ばないと広く考えられています⁶⁷、⁶⁹。

IP戦略: KLAもEUV検査関連の特許(例: US Patent 12418972 "Confocal chromatic metrology for EUV source condition monitoring"²³、US Patent 9164388 "Inspection apparatus and inspection method"²⁵)を多数保有しており、この分野での技術開発を継続しています。しかし、「アクティニック検査」という、業界が長年必要としていた⁶⁷「本命」技術の商用化(⁴)において、レーザーテックが先行しました。KLAは現在、アクティニック検査が不要な(あるいは補完的な)DUV検査市場での優位性を防衛しつつ、EUV市場での限定的なシェアを確保する戦略を採っていると見られます。

ASMLとの比較

市場と技術: ASMLは、EUVリソグラフィに不可欠な「露光装置(スキャナ)」を世界で唯一供給する、リソグラフィ市場の絶対的な支配者です(14)。

IP戦略: ASMLのIP戦略は、単一製品の防衛に留まらず、「エコシステムの構築と支配」²¹にあります。中核となる露光技術は自社で固めつつ、光学系(レンズ・ミラー)のCarl Zeiss²¹や先端研究機関 IMEC²¹とは排他的なパートナーシップと共同研究開発を通じてIPを囲い込みます。さらに、Canon³⁶ やIntel³⁵といった他の主要プレイヤーとは、広範な「グローバル・クロスライセンス契約」³⁶を締結します。2007年のASML/ZeissとCanonの間のクロスライセンス契約³⁶は、技術移転を伴わずに(no transfer of technology)³⁶、各社が他社の特許権を気にすることなく自由に製品開発・販売を行えるようにする(compete more freely)³⁶ものであり、IP訴訟による市場の停滞を避け、エコシステム全体を円滑に機能させるための典型的な戦略です。

レーザーテックとの関係: ASMLも、EUVマスク検査(例: US20100149505A1 "EUV Mask Inspection System" やペリクル関連(例: US11635681 "Mask assembly and associated methods" の特許を保有しています。しかし、ASMLが自らアクティニック検査装置市場に本格参入するのではなく、レーザーテックの独占を(少なくとも現時点では)許容しているように見えます。

これは、両社の間に「暗黙的な相互依存関係」が存在するためと推察されます。ASMLにとって、自社の高価なEUV露光装置が顧客(ファブ)で安定的に稼働し、高い歩留まりで量産適用(HVM)されることは、ビジネス上の最優先事項です。そのためには、信頼性の高い「マスク品質保証」ソリューションが不可欠です。レーザーテックのアクティニック検査装置(ABICS/ACTIS)は、このEUV露光のリスクをヘッジし、ASMLの露光装置の販売と市場拡大を「促進」する重要な役割を担っています。ASMLにとって、信頼できる検査ソリューションが存在すること(たとえそれが他社の独占であっても)

は、自社のエコシステム全体のリスクを低減する上で有益であると考えられます。

Applied Materials (AMAT) との比較

市場と技術: Applied Materials (AMAT) は、リソグラフィ(パターニング) の「前工程」である成膜(PVD, CVD) や、「後工程」であるエッチング(Etch)、平坦化(CMP) 30など、半導体製造プロセスの広範な領域におけるリーダー企業です27。

IP戦略: AMATのIP戦略は、個々の装置の性能向上に加え、「プロセス・インテグレーション(統合)」によるソリューション提供に重点が置かれています。例えば、EUVリソグラフィは微細なパターン形成には優れますが、複雑な回路を一度で描画できない(例:ダブルパターニングが必要)という課題がありました。AMATは、この課題に対し、EUV露光の後でパターン形状を補正する「Sculpta」という革新的なパターンシェーピング(エッチング)技術^{28, 29}を開発しました。これは、EUVのプロセスを簡素化し、顧客のコスト(資本コスト、製造コスト、エネルギー)を大幅に削減する²⁸ものです。また、EUVマスクの材料(吸収体など)に関する特許³¹も保有しており、自社のプロセス装置の価値をEUVエコシステム全体の中で高めるためのIPポートフォリオを構築しています。

レーザーテックとの関係: AMATは、レーザーテックの検査市場とは直接競合しません。むしろ、 AMATの「Sculpta」技術²⁹のように、EUVプロセスを補完・最適化する技術(IP)であり、レーザーテック と同じEUVエコシステム内で共存する、補完的な関係にあると言えます。

【重要】競合IP戦略 比較表

以下に、これら4社のEUV関連市場におけるIP戦略のポジショニングの違いを整理します。

比較項目	レーザーテック (Lasertec)	KLA	ASML	Applied Materials (AMAT)
主要事業	検査・測定装置 (特化型) ²	検査・測定装置 (広範型) ²⁴	リソグラフィ露 光装置 ³⁶	プロセス装置 (成膜・エッチン グ等) ²⁹
EUV検査製品	ACTIS / ABICS	Teron SL Series ²⁴	(自社製品なし)	(自社製品なし)

EUV検査技術	アクティニック (13.5nm) ⁶⁴	非アクティニック (DUV) ⁶⁸	(関連特許保有) 32	(EUVマスク材 料・プロセス関 連特許保有) ³¹
IP戦略	技術的要塞/ ニッチ独占 (独 自技術の秘匿・ 防衛) ³	水平的ポート フォリオ (DUV 市場の防衛と EUVへの拡張)	エコシステム支配 / クロスライセンス (技術の管理・共有) ³⁶	プロセス統合 (自社装置の付 加価値向上) ²⁹
市場地位	EUVアクティ ニック検査市場 を100%独占 ²⁰	DUV検査市場 で優位。EUVで は限定的。	EUV露光装置 市場を100%独 占 ²¹ 。	プロセス装置市 場で広範なシェ ア ²⁷ 。

(出典:各引用番号に基づくアナリスト作成)

当章の参考資料

- - 2. https://www.lasertec.co.jp/en/ir/data/integrated_report.html
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html
- 13. https://patents.justia.com/assignee/lasertec-corporation
- 20. https://note.com/jpctfund/n/n314f4cf3d424
- 21. https://www.techno-producer.com/ai-report/asml_ip_strategy_report/
- 23. https://patents.justia.com/assignee/kla-corporation
- 24. https://www.kla.com/advance/innovation/teron-sl670e-and-teron-sl670e-xp-euv-reticle-quality-control
- 25. https://patents.google.com/patent/US9164388B2/en
 - 27. <a href="https://patentpc.com/blog/top-chip-making-equipment-companies-asml-applied-making-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-companies-asml-applied-making-equipment-c
- 28. https://ir.appliedmaterials.com/news-releases/news-release-details/applied-materials-innovative-pattern-shaping-technology-reduces/
- 29. https://ir.appliedmaterials.com/news-releases/news-release-details/applied-material

s-expands-patterning-solutions-portfolio/

- 30. https://www.appliedmaterials.com/us/en/blog/blog-posts/the-role-of-cmp-in-device-scaling.html
- 31. https://patents.google.com/patent/US20140248555A1/en
- 32. https://patents.google.com/patent/US20100149505A1/en
- 33. https://patents.iustia.com/assignee/asml-netherlands?page=31
 - 35. https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate
 nts-to-intel
- 36. https://www.asml.com/en/news/press-releases/2007/asml-zeiss-and-canon-cross-license-lithography-equipment-patent-portfolios
- 53. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202411.pdf
- 59. https://www.lasertec.co.jp/en/company/history.html
 - 62. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11148/111480W/Actinic-patterned-mask-defect-inspection-for-EUV-lithography/10.1117/12.2538001.full
 - 64. https://www.asahikawa-med.ac.jp/dept/ge/chemical/icpst40/36-1COPY.pdf
 - 67. https://spie.org/documents/Membership/BacusNewsletters/BACUS-Newsletter-January-2020.pdf
- 68. https://semiengineering.com/searching-for-euv-mask-defects/
- 69. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-188.pdf
 - 70. https://www.spiedigitallibrary.org/proceedings/Download?urlId=10.1117%2F12.220104
 8

リスク・課題(短期/中期/長期)

レーザーテックの知財戦略は、現時点で極めて大きな成功を収めていますが、その独占的な性質ゆ

えに、特有の戦略的リスクと課題を内包しています。本章では、これらのリスクを短期・中期・長期の時間軸で分析します。

短期リスク: 市場の信頼性とオペレーション

短期的な最大のリスク要因は、同社の技術的信頼性および会計処理に対する市場からの疑義であると見られます。

2024年6月5日、空売り投資家であるScorpion Capital LLCは、レーザーテックに関する詳細なレポートを公開しました^{90,91}。このレポートは、同社が「不正な会計処理(Fake Numbers)」⁹¹、特に仕掛品(work in process)⁹⁰に関連する不正会計を行っていると主張しました。

さらに、このレポートは会計問題に留まらず、同社のIP戦略の核である主力製品ACTISの技術的な信頼性についても深刻な疑義を呈しています 9 。具体的には、Scorpion Capitalは(匿名のTSMC関係者の発言とされる情報に基づき)以下のように主張しています。

- ACTISは「欠陥のある(Flawed)」ツールである⁹¹。
- TSMCはACTISを「生産には使用できず(unusable for production)」、R&D用のニッチなツールと見なしている⁶⁵。
- TSMCはACTIS A150の追加購入を停止している⁶⁵。
- ACTISは検査プロセス(P2: 欠陥修復後の再検査)において「デブリ(ゴミ)を発生させ」⁶⁵、その結果、バックアップとしてKLAのDUVツールによる再検査が必要となっている⁶⁶。

これらの主張が事実であれば、レーザーテックの技術的優位性と独占的地位の前提が(少なくとも一部の顧客との関係において)揺らぐことになります。

この重大な疑惑に対し、レーザーテックは迅速に対応しました。2024年6月18日、同社は疑惑(特に仕掛品に関する会計処理)の客観的な調査のため、独立した社外取締役2名(三原 麹氏:早稲田大学教授、岩田 佳子氏: J-Eurus IR株式会社 取締役会長)および外部専門家1名(岩田 具敬氏: KPMG FAS Co., Ltd. パートナー、公認会計士・弁護士)で構成される「特別調査委員会」を設置しました%。

そして2024年8月5日、同委員会による調査(調査期間:2024年6月18日~8月5日)の結果として、「不適切な会計処理は認められなかった」⁹⁰と公式に発表しました。

この公式発表により、会計不正に関する疑惑は(少なくとも法的には)否定されたと見られます。しかし、Scorpionレポート⁶⁵, ⁶⁶によって提起された「技術的な信頼性」に関するネガティブな風評は、市場や顧客の認識に影響を与え続ける可能性があります。

レーザーテックの最大の強みは「世界唯一」¹³ (15) のサプライヤーであることですが、これは顧客(TSMC, Intel, Samsung) 側から見れば、代替不可能な「単一障害点(Single Point of Failure)」であることも意味します。顧客は常にセカンドソース(代替供給元)の登場を望んでいると推察され、

Scorpionレポート⁶⁵のようなネガティブな情報は、たとえその真偽が完全には検証されていなくても、 価格交渉やサポート要求の強化、あるいはKLAなど競合他社への技術開発支援を強める動機付け として、顧客に利用される可能性があります。これが短期的な最大のリスクであると分析されます。

中期リスク:中核IPの「パテントクリフ」

中期的な視点で最も本質的かつ深刻なリスクは、前章(章4)でも分析した、中核IPの「パテントクリフ (特許の崖)」です。

レーザーテックの現在の独占的地位と「高い利益率」³は、EUVアクティニック検査技術を保護する中核的な特許群によって支えられています。これらの特許(例:US10319088(2017年出願)³、US10645289(2017年出願)⁴⁴など)は、2030年代半ば(2035年~2037年頃)から順次、存続期間(出願から20年)の満了を迎えます。

この時期を境に、KLAやASMLといった、強大な資本力、高度な光学技術、そして世界的な顧客基盤を持つ競合他社が、レーザーテックの基本技術の(満了した)一部を合法的に利用し、アクティニック検査市場へ参入してくる可能性が飛躍的に高まります。

このパテントクリフは、同社の高収益構造の源泉である「独占」³を直接脅かす、回避不可能な中期的リスクです。同社がHigh-NA対応の新製品群(ACTIS A300⁷⁸、ABICS E320⁷⁹)によって「ローリング・モノポリー」戦略を成功させ、顧客を次世代の特許網へと完全に移行させることができるかどうかが、2030年代以降の企業価値を左右する最大の分岐点となると言えます。

なお、公開特許データベース(16)を調査すると、レーザーテックや他の企業(例:AGC Inc. 75)が出願人となっている特許の中に、ステータスが「Expired - Fee Related」(維持年金の不払いによる権利失効)となっているものが散見されます。これは、企業が戦略的な価値が低い、あるいは維持コストに見合わないと判断した特許を意図的に「剪定(Pruning)」する、グローバル企業のIPポートフォリオ管理における通常の活動(21 の一元管理の一環)の一環であると見られます。したがって、これら個別の特許失効が、同社の中核的IP戦略の脆弱性を示すネガティブな兆候であるとは言えません。注視すべきはあくまで中核特許群の満了時期です。

長期リスク:技術的ディスラプション(破壊的革新)

長期的な視点では、レーザーテックのIP要塞の「前提」そのものが覆されるリスク、すなわち「技術的ディスラプション(破壊的革新)」のリスクが存在します。

同社の現在の独占的地位は、「EUV光(13.5nm)」を用いた「光学検査」が、マスク欠陥(特に位相欠)

陥)を検出する最良かつ唯一の手段である、という技術的パラダイムに基づいています。同社の強力な特許網も、この光学検査技術(高精度反射光学系など)¹⁴(⁸)を中心に構築されています。

しかし、長期的には、この前提自体が非連続的な技術革新によって無力化(Obsolete)される可能性があります。

例えば、以下のようなシナリオが考えられます。

- 1. **E-Beam**(電子ビーム)検査の飛躍的進化: 現在、ASMLやApplied Materialsは、E-Beamを用いた検査技術(例:マルチビームE-Beam検査)⁸⁸, ⁶³の研究開発を進めています。E-Beamは原理的に光学系よりも高い解像度を持つ可能性がありますが、現在は検査速度(スループット)が遅いことが最大の課題です。もし、このスループットが(例えばマルチビーム化によって)飛躍的に向上し、かつ光学検査では見えない新たな欠陥を検出できるようになれば、市場の主流が光学検査からE-Beam検査にシフトする可能性があります。
- 2. **AI**による予測・分類技術の高度化: レーザーテック自身もAI(ディープラーニング)を用いた欠陥 分類ソフト(LM Brain) ⁸⁶などを開発していますが、もしAIによるシミュレーションやデータ解析技 術が極端に進歩し、マスク上の特定の形状や、DUV検査で得られたデータから、EUVで「印刷 可能」な欠陥を高精度で「予測」できるようになった場合、高価なアクティニック光(13.5nm)を用いた物理的な検査の必要性そのものが低下するかもしれません。

これらの「非連続的な技術革新」は、レーザーテックが築き上げてきた「光学」特許の要塞を迂回し、その価値を根本から陳腐化させる可能性があります。同社の現在の「ローリング・モノポリー」戦略(22)は、High-NAという「連続的」な技術進化(光学技術の延長線上)には極めて強力ですが、 E-BeamやAlといった「非連続的」な技術革新に対しては、脆弱な側面を持つ可能性が否めません。

当章の参考資料

•

3. https://www.lasertec.co.jp/en/ir/plan/risk.html

•

8. https://patents.google.com/patent/US9588421B2/en

•

9. https://patents.justia.com/patent/10319088

•

13. https://patents.justia.com/assignee/lasertec-corporation

•

14. https://www.nedo.go.jp/media/practical-realization/201903lt.html

•

15. https://finance-frontend-pc-dist.west.edge.storage-yahoo.jp/disclosure/20250929/2 0250822545830.pdf

•

44. https://patents.iustia.com/assignee/lasertec-corporation

•

63. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13216/3037237/EUV-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full

•

- 65. https://scorpionreports.s3.us-east-2.amazonaws.com/Summary1.pdf
- 66. https://scorpionreports.s3.us-east-2.amazonaws.com/6920.pdf
- 71. https://patents.google.com/patent/US6043452A/ja
- 72. https://patents.google.com/patent/US7134211B2/zh
- 73. https://patents.google.com/patent/US6665326
- 74. https://google.com/patents/CN101351294B?cl=ar
- 75. https://patents.google.com/patent/US20090130574
- 79. https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F_D21BFA11D6B4C4?1 733129211
- 86. https://www.lasertec.co.jp/en/products/microscope/optelics_hybrid/spec/lm_inspect.html
 - 88. https://semiengineering.com/metrology-strategies-for-2nm-processes/
 - 90. https://post.tokyoipo.com/tdnet/20240805/202408051600/20240805562483/140120240805562483.pdf
 - 91. https://site.financialmodelingprep.com/market-news/Lasertec-Under-Fire-Fraud-Allegations-Rock-Japans-Tech-Darling

今後の展望(政策/技術/市場動向との接続)

レーザーテックの知財戦略は、半導体業界のメガトレンドと密接に連動しています。同社の今後の優位性は、技術革新の波に乗り続け、エコシステム内での不可欠性を維持・強化できるかにかかっています。本章では、市場、技術、およびエコシステムの観点から、同社のIP戦略の今後の展望を分析します。

市場動向: AlとHigh-NAが牽引する需要

現在の半導体市場は、NVIDIAやAMDなどが開発する高性能GPUに代表される「AIチップ」、およびそれに付随する高性能メモリ(HBM)の爆発的な需要、いわば「スーパーサイクル」でによって牽引されています。これにより、最先端のロジックチップ(3nm以下)でやアドバンストDRAMの製造が急拡大しています。

この市場動向は、EUVリソグラフィ技術の適用範囲と生産能力の拡大を直接的に促していますで。さらに重要なのは、市場が要求する技術の「質的変化」です。

第一に、要求される微細化のレベルが、従来の5nmノード 87 から、3nm、2nm 88 、さらには「オングストローム(Angstrom)時代」 78 へと、物理的な限界に迫り続けています。

第二に、単なる2Dの微細化だけでなく、GAA(Gate-All-Around)トランジスタや、チップの裏面から電力を供給する「裏面電源供給(Backside Power Delivery)」88といった、複雑な3D構造の採用が進んでいます。

これらの技術トレンド(微細化と3D化)は、フォトマスク(原版)のパターンをますます複雑かつ高密度 化させます。その結果、マスク上のわずかな欠陥が、チップの性能や歩留まりに与える影響は、従来 よりも指数関数的に増大します。半導体技術専門メディアが指摘するように、「マスク欠陥が一つで もあれば、チップ歩留まりに致命的な影響を与える」⁸⁸状況が常態化しつつあります。

技術動向: High-NAへの移行と「Scarcity(希少性)」の強化

この市場動向は、マスク検査技術(IP)に対する要求を極限まで高めており、レーザーテックの知財 戦略にとって強力な追い風となっています。

アナリストレポート(⁷)が指摘するように、「マスクがより複雑で大規模になるほど、レーザーテックの (検査技術の)希少性(Scarcity)は強まる」⁷⁶からです。DUV光(非アクティニック)検査では原理的に 検出できない「印刷可能な(Printable)欠陥」⁸⁸(特に位相欠陥)を検出できる、世界唯一⁶⁴のアクティニック検査技術の価値は、マスクが複雑化するほど高まります。

レーザーテックは、この需要の「現在」の波(EUV)だけでなく、その「次」の巨大な波である「High-NA (高開口数)EUV」に照準を合わせ、戦略的にIPポートフォリオを構築しています。

High-NAは、オングストローム時代の技術ノード⁷⁸を実現するために不可欠な次世代の露光技術です。同社は、このHigh-NAリソグラフィが量産適用されるタイミングを見据え、すでにHigh-NAのより厳しい検査要件(高感度、高解像度)に対応するために設計された新製品群を市場に投入していま

す。

- ACTIS A300 シリーズ(パターンマスク検査): 2023年にリリースされ、High-NA EUVリソグラフィの高い検査感度要件を満たすように設計されています⁷⁸。SPIE 2025で発表予定の論文(²⁴)でも、High-NAのパターンピッチに対するA300シリーズの検出感度について議論される予定であり、同社がこの分野をリードしていることを示しています。
- ABICS E320 シリーズ(マスクブランクス検査): 同じくHigh-NA向けに、より微小な位相欠陥の 検出と、高い欠陥座標精度を実現するために、高倍率のシュワルツシルト対物レンズと最適化 された照明光学系を新たに設計・搭載しています⁷⁹。

このように、同社のIP戦略およびR&D戦略は、市場と技術の最先端トレンドと完全に同期しており、 競合他社が(仮に現行EUVのパテントクリフを狙っていたとしても)追いつく前に、次の技術世代で再 び「希少性」を確立する動きを加速させています。

エコシステム内の地位:不可欠性の増大

これらの市場動向と技術動向を踏まえると、レーザーテックの半導体エコシステム内における「不可欠性」は、今後さらに増大していくと推察されます。

レーザーテックのIP(アクティニック検査技術)が顧客(半導体メーカー)に提供する本質的な価値は、単なる「検査装置」という「モノ」ではありません。それは、ASMLの露光装置やAMATのプロセス装置など、ライン全体で数兆円規模に達するEUV/High-NAリソグラフィ投資の成否を左右する、「歩留まりのリスクヘッジ(保険)」という「コト(ソリューション)」です。

半導体メーカーが2nmプロセス⁸⁸や、その先のオングストローム・ノード⁷⁸に莫大な投資を行う際、その投資回収(ROI)の成否は、「印刷可能な欠陥」⁸⁸を製造プロセスの初期段階(マスク)でいかにゼロにできるかにかかっています。レーザーテックは、その「欠陥ゼロ」をアクティニック光(13.5nm)で保証できる、世界で唯一の企業⁶⁴です。

今後の展望として、AIチップなどの最終製品の価値が高騰すればするほど、その製造を(不良マスクによって)失敗した場合の機会損失は莫大になります。それに伴い、その製造失敗リスクをヘッジする「保険」としてのレーザーテックの検査技術の経済的価値も、非線形に高まっていく可能性があります。これは、同社の価格決定力(と高い利益率)が、EUVからHigh-NAへの移行に伴い、さらに強化される可能性を示唆しています。

同社がSPIE(²⁴)のような技術学会の場で、High-NA対応技術の優位性を積極的にアピールし続けることは、単なる技術発表に留まりません。それは、顧客(TSMC, Intel, Samsung)やエコシステム全体(ASMLを含む)に対して、「我々のIP(技術)がなければ、あなた方の次世代(High-NA)投資は成功しない」という強力なメッセージを継続的に発信し、エコシステム内での自社の不可欠性を未来にわたって維持・強化するための、IP戦略と一体化した高度なマーケティング戦略であると分析されま

す。

当章の参考資料

- 64. https://www.asahikawa-med.ac.jp/dept/ge/chemical/icpst40/36-1COPY.pdf
- 76. https://news.futunn.com/en/post/64067417/amid-the-sweeping-ai-wave-the-long-se miconductor-equipment-sector
- 78. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13655/136550H/A
 ctinic-patterned-mask-inspection-for-high-NA-EUV-lithography/10.1117/12.3072833.f
 ull
- **79**. https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F_D21BFA11D6B4C4?1733129211
- 80. https://www.lasertec.co.jp/news/2023/20231108_3839.html
 - 85. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
- 87. https://www.lasertec.co.jp/en/ir/individuals/euv.html
- 88. https://semiengineering.com/metrology-strategies-for-2nm-processes/

戦略的示唆(経営/研究開発/事業化の観点)

アナリスト注記:本章は、これまでの分析(事実)に基づき、レポートの読者(経営層、投資家、戦略担当者)に対する、レーザーテックのIP戦略に関する将来的な戦略的示唆(推察)を提示するものです。

レーザーテックの知財戦略は、EUVアクティニック検査という一点において極めて強力な「技術的要塞」を築き、高い収益性³を実現しています。この成功モデルを維持・発展させるため、経営、R&D、事業化の各観点から、以下の戦略的示唆が導き出されます。

経営への示唆:独占の「深化」と「多様化」

レーザーテックの現在の強みは、「一点突破型」のIP戦略(EUVアクティニック検査への集中)にあります。これは高い利益率3の源泉であると同時に、単一技術への過度な依存という点で、経営上のリスク(章6で分析した技術的ディスラプションのリスクなど)も内包しています。

示唆(1)(深化):

最優先事項は、現在の独占的地位を「深化」させ続けることです。章4で分析した「ローリング・モノポリー」戦略を継続し、High-NA(22)、さらにその先の次世代リソグラフィ技術(例: Hyper-NA)に対する検査IPの先行取得と権利化を、競合他社に先駆けて実行し続ける必要があります。これにより、中核IPの「パテントクリフ」(章6)のリスクを、技術世代の移行によって実質的に無効化し続けることが求められます。

示唆②(多様化):

同時に、経営陣は、現在の独占的地位によって得られる潤沢なキャッシュを用い、長期的なリスクヘッジのためのIPポートフォリオの「多様化」を検討すべきです。これは、EUV検査市場(単一市場)への過度な依存を緩和するためです。具体的には、自社が強みを持つ光学技術や画像処理技術と親和性が高い、EUV以外の成長領域(例:複雑化する3D構造向け計測技術、AIを用いたインラインでのウェーハ欠陥検査ソリューション⁸⁶など)において、独自のIPを持つスタートアップ企業のM&A(合併・買収)や、大学・研究機関との共同研究¹⁷の戦略的な拡大が、有効な選択肢となると考えられます。

研究開発への示唆:「自己破壊型IP」の創出

同社のR&D部門のミッションは、単に「世の中にないものをつくる」「こと(章1)に留まりません。より正確には、「自社の既存製品(と既存IP)を陳腐化させる、新たな(次世代の)IPを創出する」ことにあると定義すべきです。

示唆③:

競合他社が中核IPの満了(パテントクリフ)を利用してキャッチアップ(模倣)する前に、自らHigh-NA対応製品(A300, E320)⁷⁸, ⁷⁹を市場に投入し、現行製品(A150)の市場を(ある意味で)自己破壊したように、R&D部門とIP部門は常に「自己破壊的な(Self-Disruptive)IP創出」を志向し続ける必要があります。

章2で触れた「発明考案報奨制度」¹⁵においても、既存IPの「延長線上」にある改良発明よりも、既存IPの「壁」そのものを無意味にするような「次世代の壁」となる根本的な発明(例:光学検査の限界を超える新たな検査原理)を、より高く評価するインセンティブ設計が、長期的な競争優位性を維持する上で有効である可能性があります。

事業化・顧客戦略への示唆:「IPロックイン」から「エコシステム・ロックイン」へ

章6で分析した短期リスク、すなわちScorpion Capitalの空売りレポート⁶⁵, ⁶⁶は、その真偽はともかく、顧客(半導体メーカー)が「技術(IP)的にはレーザーテックに依存せざるを得ないが、その独占的な立場に不満(例:価格、サポート、信頼性)を抱いている」可能性を示唆しています。

示唆4:

IPによる「技術的ロックイン」は強力ですが、それだけでは、顧客の長期的な不満や「セカンドソース特望論」を増大させかねません。今後は、IPの強み(=世界唯一の技術)をテコにしつつ、主要顧客(TSMC, Intel, Samsung等) 76 の最先端プロセス(2nm/tングストローム) 88 の研究開発(R&D)段階により深く入り込み、単なる「装置サプライヤー」から「共同開発パートナー」としての地位を確立すべきです。

示唆(5):

これは、単に検査装置を納入するだけでなく、顧客の複雑な歩留まり管理プロセス全体(データ解析、欠陥分類、プロセス改善フィードバック)⁵に、レーザーテックの技術(ハードウェアとソフトウェア⁸⁶)を不可分な形で組み込むことを意味します。IP(技術)でしか縛れない関係から、プロセス(運用)全体で縛る「エコシステム・ロックイン」へと移行することで、顧客にとってのスイッチングコスト(運用プロセス全体を変更するコスト)を極大化できます。

これにより、たとえ将来的に中核IPが満了し、競合他社(セカンドソース)が技術的に同等の装置を市場に投入してきたとしても、顧客は運用プロセス全体の変更を嫌い、既存のパートナー(レーザーテック)との関係を維持するインセンティブが働きます。これが、パテントクリフ後も優位性を維持するための、最も現実的かつ強力な防衛戦略となると推察されます。

当章の参考資料

ullet

- 1. https://www.lasertec.co.jp/company/philosophy.html
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html

•

5. https://www.lasertec.co.jp/en/sustainability/quality.html

•

15. https://finance-frontend-pc-dist.west.edge.storage-yahoo.jp/disclosure/20250929/2 0250822545830.pdf

•

17. https://www.lasertec.co.ip/en/sustainability/quality.html

•

65. https://scorpionreports.s3.us-east-2.amazonaws.com/Summary1.pdf

•

66. https://scorpionreports.s3.us-east-2.amazonaws.com/6920.pdf

•

76. https://news.futunn.com/en/post/64067417/amid-the-sweeping-ai-wave-the-long-se-miconductor-equipment-sector

•

78. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13655/136550H/A ctinic-patterned-mask-inspection-for-high-NA-EUV-lithography/10.1117/12.3072833.f ull

- **79**. https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F_D21BFA11D6B4C4?1733129211
 - 86. https://www.lasertec.co.jp/en/products/microscope/optelics_hybrid/spec/lm_inspect.html
 - 88. https://semiengineering.com/metrology-strategies-for-2nm-processes/

総括

本レポートは、レーザーテック株式会社の知的財産(IP)戦略が、同社の経営理念、ビジネスモデル、そしてEUVリソグラフィ時代における独占的市場地位の全てを支える中核機能であることを、一次情報(IR、特許DB、企業リリース)の分析を通じて明らかにしました。

同社の戦略は、「世の中にないものをつくる」¹というハイリスクなR&Dを、「R&D志向のファブライト企業」²として持続的に実行するための、高効率なリターン回収メカニズムとして設計されています。

その核心は、EUV量産化に不可欠な「アクティニック(13.5nm)検査」¹³という技術的ボトルネックを、「高精度反射光学系」¹⁴という極めて模倣困難な技術(IP)によって世界で唯一解決した点にあります。これにより、同社は半導体エコシステムにおける代替不可能な「料金所」⁶⁴としての地位を確立し、競合(KLA等)の参入を事実上ブロックしています。

本戦略の最大リスクは、これら中核特許が2030年代半ばに迎える「パテントクリフ」⁸(26)です。しかし、同社はこのリスクに対し、次世代のHigh-NA EUV対応製品群(A300, E320シリーズ)⁷⁸, 79を既に市場投入し、特許ポートフォリオを次世代へ移行させる「ローリング・モノポリー」戦略を明確に実行しています。

意思決定者への含意として、レーザーテックの真の強みは、個々の特許(点)ではなく、現場のエンジニアが製品ライフサイクル全体「を通じて創出した技術シーズを、専門の知財部門が迅速に権利化し、次の高リスクR&D投資に繋げるという、組織的な「IP創出サイクル」そのものにあると結論付けられます。競合他社がこの「システム」自体を模倣することは極めて困難であり、同社の持続的優位性は、このIP創出サイクルが技術的ディスラプション(破壊的革新)に見舞われずに機能し続ける限り、中長期的に維持される可能性が高いと推察されます。

参考資料リスト(全体)

- https://www.lasertec.co.jp/company/philosophy.html
 https://www.lasertec.co.jp/en/ir/data/integrated_report.html
- 3. https://www.lasertec.co.jp/en/ir/plan/risk.html
- 4. https://www.lasertec.co.jp/en/ir/data/
- 5. https://www.lasertec.co.jp/en/sustainability/quality.html
- 6. https://www.lasertec.co.jp/en/ir/
- 7. https://patents.google.com/patent/JP2013080810A/en
- 8. https://patents.google.com/patent/US9588421B2/en
 - 9. https://patents.justia.com/patent/10319088
- 10. https://patents.google.com/patent/US10539511B2/ja
 - 11. https://www.lasertec.co.jp/en/
 - 12. https://www.epo.org/en/searching-for-patents/technical/espacenet
- 13. https://patents.justia.com/assignee/lasertec-corporation
- 14. https://www.nedo.go.jp/media/practical-realization/201903lt.html
 - 15. https://finance-frontend-pc-dist.west.edge.storage-yahoo.jp/disclosure/20250929/2 0250822545830.pdf
- 16. https://www.lasertec.co.jp/en/sustainability/governance.html
- 17. https://www.lasertec.co.jp/en/sustainability/quality.html
- 18. https://www.lasertec.co.jp/en/sustainability/human/rights.html
- 19. https://www.daiwair.co.jp/td_download.cgi?c=6920&i=2864798
- 20. https://note.com/jpctfund/n/n314f4cf3d424
- 21. https://www.techno-producer.com/ai-report/asml_ip_strategy_report/

- 22. https://patents.google.com/patent/US20140001370A1/en
- 23. https://patents.justia.com/assignee/kla-corporation
 - 24. https://www.kla.com/advance/innovation/teron-sl670e-and-teron-sl670e-xp-euv-reticle-quality-control
- 25. https://patents.google.com/patent/US9164388B2/en
- 26. https://pubchem.ncbi.nlm.nih.gov/patent/US-2015192459-A1
- 27. https://patentpc.com/blog/top-chip-making-equipment-companies-asml-applied-m aterials-and-lam-research-market-data
 - 28. https://ir.appliedmaterials.com/news-releases/news-release-details/applied-materials-innovative-pattern-shaping-technology-reduces/
- 29. https://ir.appliedmaterials.com/news-releases/news-release-details/applied-materials-expands-patterning-solutions-portfolio/
- 30. https://www.appliedmaterials.com/us/en/blog/blog-posts/the-role-of-cmp-in-device-scaling.html
- 31. https://patents.google.com/patent/US20140248555A1/en
- 32. https://patents.google.com/patent/US20100149505A1/en
- 33. https://patents.justia.com/assignee/asml-netherlands?page=31
- 34. https://patents.justia.com/assignee/asml-holding-n-v?page=4
 - 35. https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate https://www.asml.com/en/news/press-releases/2005/asml-licenses-technology-pate <a href="https://www.asml.com/en/news/press-releases/2005/asml-licenses/2005/as
 - 36. https://www.asml.com/en/news/press-releases/2007/asml-zeiss-and-canon-cross-license-lithography-equipment-patent-portfolios
- 37. https://www.lasertec.co.jp/en/sustainability/quality.html
- 38. https://patents.justia.com/assignee/lasertec-corporation
- 39. https://insights.greyb.com/lasertec-patents/

- 40. https://millerjohnson.com/federal-circuit-opens-door-to-an-award-of-attorneys-fees-s-in-pay-to-sue-litigation/
 - 41. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202507.pdf
- 42. https://patents.google.com/patent/US9588421B2/en
- 43. https://www.lasertec.co.jp/en/ir/individuals/creation.html
- 44. https://patents.justia.com/assignee/lasertec-corporation
- 45. https://www.lasertec.co.jp/en/news/2024/20241202 3888.html
 - 46. https://confit-sfs.atlas.jp/customer/pmj2021/exhibition/document/113_Lasertec01_210 226e4.pdf
- 47. https://www.spie.org/Documents/ConferencesExhibitions/AL11-Abstracts.pdf
 - 48. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291502/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.short
 - 49. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
- 50. https://spie.org/Publications/Proceedings/Volume/7379
- 51. https://www.spiedigitallibrary.org/conference-proceedings-of-SPIE/13655.toc
- 52. https://www.lasertec.co.jp/en/company/history.html
 - 53. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202411.pdf
- 54. https://www.lasertec.co.jp/en/news/2023/20231124_3841.html
 - 55. https://spie.org/documents/Membership/BacusNewsletters/BACUS-Newsletter-January-2020.pdf
- 56. https://www.lasertec.co.jp/en/sustainability/quality.html
- 57. https://www.lasertec.co.jp/en/company/pdf/en_company_profile202408.pdf

- 58. https://i.moscow/patents/US20230152680A1_20230518
- 59. https://www.lasertec.co.jp/en/company/history.html
- 60. https://scholar.google.com/citations?user=z3dyKXkAAAAJ&hl=ja
 - 61. https://www.researchgate.net/publication/252090154_Development_of_actinic_full-field_EUV_mask_blank_inspection_tool_at_MIRAI-Selete
- 62. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11148/111480W/Ac tinic-patterned-mask-defect-inspection-for-EUV-lithography/10.1117/12.2538001.full
- 63. <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13216/3037237/EUV-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.3037237.full/v-mask-technologies-evolution-and-ecosystem-for-devices/10.1117/12.1117/12.1117/12.1117/12.1117/12.1117/12.1117
- 64. https://www.asahikawa-med.ac.jp/dept/ge/chemical/icpst40/36-1COPY.pdf
 - 65. https://scorpionreports.s3.us-east-2.amazonaws.com/Summary1.pdf
- 66. https://scorpionreports.s3.us-east-2.amazonaws.com/6920.pdf
- 67. https://spie.org/documents/Membership/BacusNewsletters/BACUS-Newsletter-January-2020.pdf
- 68. https://semiengineering.com/searching-for-euv-mask-defects/
- 69. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-188.pdf
- 70. https://www.spiedigitallibrary.org/proceedings/Download?urlId=10.1117%2F12.2201048
- 71. https://patents.google.com/patent/US6043452A/ja
- 72. https://patents.google.com/patent/US7134211B2/zh
- 73. https://patents.google.com/patent/US6665326
- 74. https://google.com/patents/CN101351294B?cl=ar
 - 75. https://patents.google.com/patent/US20090130574
 - **76**. https://news.futunn.com/en/post/64067417/amid-the-sweeping-ai-wave-the-long-semiconductor-equipment-sector

77. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291502/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.short

78. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13655/136550H/A <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigitallibrary.org/conference-proceedings-of-spiedigit

79. https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F_D21BFA11D6B4C4?1733129211

80. https://www.lasertec.co.jp/news/2023/20231108 3839.html

81. https://discovery.researcher.life/article/thermomechanical-stability-analysis-of-large-masks-6-12-for-high-na-euv-lithography/7bbe8a612fe13acb94436d9fa6d75594

82. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291502/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.short

83. https://spie.org/Publications/Proceedings/Volume/12915

84. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12325/123250H/A ctinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2642098.short

85. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC1342

86. https://www.lasertec.co.jp/en/products/microscope/optelics_hybrid/spec/lm_inspect.html

87. https://www.lasertec.co.jp/en/ir/individuals/euv.html

88. https://semiengineering.com/metrology-strategies-for-2nm-processes/

89. https://www.lasertec.co.jp/en/ir/individuals/pdf/en_corebusiness_201908.pdf

90. https://post.tokyoipo.com/tdnet/20240805/202408051600/20240805562483/140120240805562483.pdf

91. https://site.financialmodelingprep.com/market-news/Lasertec-Under-Fire-Fraud-Allegations-Rock-Japans-Tech-Darling

92. https://www.corporatesecuritieslawblog.com/2025/04/fourth-circuit-rejects-the-use-of-short-seller-report-as-a-basis-for-satisfying-loss-causation-element-in-securities-fraud-action/

引用文献

ort

- 1. Risk Factors | Lasertec Corporation, 11月 7, 2025にアクセス、https://www.lasertec.co.jp/en/ir/plan/risk.html
- 2. 世界を独占するEUV検査王者 レーザーテック完全解剖~圧倒的 ..., 11月 7, 2025に アクセス、https://note.com/jpctfund/n/n314f4cf3d424
- 3. Journal of Science and Technology, 11月 7, 2025にアクセス、 https://www.asahikawa-med.ac.jp/dept/ge/chemical/icpst40/36-1COPY.pdf
- 4. Milestones | Lasertec Corporation, 11月 7, 2025にアクセス、 https://www.lasertec.co.jp/en/company/history.html
- 5. Inventing for your success, inventing for the future, 11月 7, 2025にアクセス、 https://www.lasertec.co.ip/en/company/pdf/en_company-profile202411.pdf
- 6. Patents Assigned to Lasertec Corporation Justia Patents Search, 11月 7, 2025に アクセス、https://patents.justia.com/assignee/lasertec-corporation
- 7. Amid the sweeping Al wave, the long低调 semiconductor equipment sector has finally come into the spotlight! This 'core eye' of the EUV supply chain surged over 20% in a single day., 11月 7, 2025にアクセス、
 https://news.futunn.com/en/post/64067417/amid-the-sweeping-ai-wave-the-long-semiconductor-equipment-sector
- 8. 極端紫外線(EUV)を利用した次世代のマスクブランクス検査技術 ..., 11月 7, 2025にアクセス、https://www.nedo.go.jp/media/practical-realization/201903lt.html
- 9. Actinic patterned mask inspection for EUV lithography SPIE Digital Library, 11月7, 2025にアクセス、
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/129150
 2/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2685011.sho
 rt
- 10. Thermomechanical stability analysis of large masks (6" × 12") for high-NA EUV lithography, 11月 7, 2025にアクセス、 https://discovery.researcher.life/article/thermomechanical-stability-analysis-of-large-masks-6-12-for-high-na-euv-lithography/7bbe8a612fe13acb94436d9fa6d75594
- 11. XXIX Symposium on Photomask and Next-Generation Lithography Mask Technology | (2023) | Publications | SPIE, 11月 7, 2025にアクセス、https://spie.org/Publications/Proceedings/Volume/12915
- 12. Actinic patterned mask inspection for EUV lithography SPIE Digital Library, 11月7, 2025にアクセス、
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12325/123250
 H/Actinic-patterned-mask-inspection-for-EUV-lithography/10.1117/12.2642098.sh
- 13. Ko Gondaira Google Scholar, 11月 7, 2025にアクセス、 https://scholar.google.com/citations?user=z3dyKXkAAAAJ&hl=ja

- 14. ASMLの知財戦略:技術的独占を支えるエコシステムと地政学的要塞 TechnoProducer, 11月 7, 2025にアクセス、 https://www.techno-producer.com/ai-report/asml ip strategy report/
- 15. Lasertec Corporation EUV mask-related inspection systems Line up, 11月 7, 2025 にアクセス、
 - https://confit-sfs.atlas.jp/customer/pmj2021/exhibition/document/113_Lasertec01_210226e4.pdf
- 16. US6043452A Method and device for processing arbitrary 3D shaped surfaces by means of a laser, in particular for polishing and texturing workpieces, and for producing sealing surfaces on dies Google Patents, 11月 7, 2025にアクセス、https://patents.google.com/patent/US6043452A/ja
- 17. US7134211B2 Laser level Google Patents, 11月 7, 2025にアクセス、https://patents.google.com/patent/US7134211B2/zh
- 18. US6665326B2 Light source device Google Patents, 11月 7, 2025にアクセス、 https://patents.google.com/patent/US6665326
- 19. CN101351294B 激光加工系统及激光加工方法 Google Patents, 11月 7, 2025にアクセス、https://google.com/patents/CN101351294B?cl=ar
- 20. US20090130574A1 Sputtering target used for production of reflective mask blank for euv lithography Google Patents, 11月 7, 2025にアクセス、https://patents.google.com/patent/US20090130574
- 21. レーザーテック株式会社, 11月 7, 2025にアクセス、 https://finance-frontend-pc-dist.west.edge.storage-yahoo.jp/disclosure/2025092 9/20250822545830.pdf
- 23. Lasertec releases ABICS Series E320 EUV Mask Blanks Inspection and Review System, 11月 7, 2025にアクセス、
 https://www.publicnow.com/view/14E376B8A1B2D6E682DA1CA7F3D21BFA11D6B4C4?1733129211
- 24. Detection sensitivity of actinic patterned mask inspection systems for high-NA EUV lithography SPIE Digital Library, 11月 7, 2025にアクセス、
 https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13424/PC13424/PC1342406/Detection-sensitivity-of-actinic-patterned-mask-inspection-systems-for-high/10.1117/12.3050110.full
- 25. 「SPIE Photomask Technology + EUV Lithography 2023」でBACUS Prize、Best Paper Presentation Awardを受賞 | レーザーテック株式会社, 11月 7, 2025にアクセス、https://www.lasertec.co.jp/news/2023/20231108_3839.html
- 26. US9588421B2 Pellicle inspection apparatus Google Patents, 11月 7, 2025にアクセス、https://patents.google.com/patent/US9588421B2/en